lyse par diffractométrie de poudre met en évidence l'analogie d'organisation de ces deux composés [Figs. 13(a) et 14]. La déshydratation s'accompagne donc d'un réarrangement des molécules dans le cristal guidé par la redistribution des liaisons hydrogène:

- Les empilements moléculaires de direction [0 1 0], les feuillets qu'ils constituent par l'intermédiaire des liaisons H dirigées suivant [001] sont à peu près inchangés.

- Les feuillets 'glissent' les uns par rapport aux autres parallèlement au plan (100); faiblement au niveau des forces de dispersion, de (b+c)/2 au niveau des liaisons de solvatation. Ce dernier mouvement substitue aux axes binaires une ligne de centres $\frac{1}{4}, \frac{1}{4}, \frac{1}{4}$ et remplace les centres 0,0,0 par des axes hélicoidaux: la maille cristalline passe donc de la symétrie C2/c à la symétrie $P2_1/c$. Elle est obtenue en conservant les axes y et z et en adoptant pour nouvel axe X la rangée [1 0 1] du groupe C2/c.

Si nous retenions comme seule modification le glissement n, on calculerait des valeurs de paramètres de maille (a) très proches de celles de la maille de l'amino-2-naphtoquinone-1,4 (b):

<i>a</i> =16,65 Å	<i>a</i> =17,03 Å
b = 4,67	b = 3,99
c = 14,08	c = 14,72
$\beta = 130^{\circ}$	$\beta = 125^{\circ}$.
<i>(a)</i>	<i>(b)</i>

Les différences observées entre les valeurs des tableaux

(a) et (b), celles observées entre les températures de fusion (266 et 206° respectivement) indiquent que si les organisations cristallines sont analogues, elles diffèrent assez nettement par la qualité des relations intermoléculaires. La détermination précise de la structure de l'amino-4 naphtoquinone-1,2 anhydre, s'impose donc comme prochaine étape de cette analyse.

Références

- COURSEILLE, C., GAULTIER, J. & HAUW, C. (1969). C.R. Acad. Sci. Paris. 268, 1358.
- FIESER, L. F. & FIESER, M. (1934). J. Amer. Chem. Soc. **56**, 1565.
- FIESER, L. E. & HARTWELL, J. L. (1935). J. Amer. Chem. Soc. 57, 1842.
- GAULTIER, J. & HAUW, C. (1966a). Acta Cryst. 20, 620.
- GAULTIER, J. & HAUW, C. (1966b). Acta Cryst. 21, 694.
- GAULTIER, J. & HAUW, C. (1969a). Acta Cryst. B25, 419.
- GAULTIER, J., HAUW, C. (1969b). Acta Cryst. B25, 546.
- GAULTIER, J., HAUW, C. & BRETON, M. (1969). Acta Cryst. B25, 231.
- GAULTIER, J., GAY, R. & HAUW, C. (1969). Thérapie 24. 643.
- HAMMON, H., SUNDARALINGAM, M. & STEWART, J. M. (1969). Acta Cryst. B25, 336.
- HAUW, C. (1967). Thèses, Bordeaux.
- HOWELLS, E. R., PHILLIPS, R. C. & ROGERS, P. (1950). Acta Cryst. 3, 210.
- KITAIGORODSKII, A. I. (1961). Organic Chemical Crystallography. New York: Consultants Bureau.
- KONDRASHEV, YU. D. (1962). Soviet Phys. 6, (4), 413.

SOKOLOV, N. D. (1965). Ann. Chim. Paris, 10, 497.

Acta Cryst. (1970). B26, 1609

Crystallographic Studies of Metal–Nucleotide Base Complexes. II. Bis-(6-hydroxypurine)copper(II) Chloride Trihydrate*

BY EINAR SLETTEN*

Department of Biological Structure, University of Washington, Seattle, Washington, U.S.A.

(Received 12 December 1969)

A deep-turquoise complex, bis-(6-hydroxypurine)copper(II) chloride trihydrate, crystallizes from an acidic solution containing hypoxanthine and cupric chloride in molar proportions 2:1. The crystals are triclinic, space group PI, with cell dimensions a=9.858(2), b=10.259(4), c=9.717(3) Å, $\alpha = 102.53$ (3)°, $\beta = 89.36$ (2)°, $\gamma = 102.21$ (3)°. 2313 independent reflexions were measured on a diffractom-eter using Mo K α radiation. The final R from full-matrix least-squares refinement is 0.11. The complex is a centrosymmetric dimer, in which each copper atom has square-pyramidal coordination. Two of the ligand atoms in the basal plane are the N(9) nitrogen atoms in the imidazole rings and the other two the N(3) nitrogen atoms in the pyrimidine rings. The apical position is occupied by a chlorine atom, Cu-Cl=2.431 Å. The copper-copper distance in the dimer is 3.024 Å. The molecular dimensions of the hypoxanthine ligands are not determined precisely because of disorder in the crystal.

Introduction

The first paper in this series described the crystal structure of a neutral 2:1 adenine-copper(II) complex (later referred to as AdCu) obtained from a slightly alkaline solution (Sletten, 1969). A similar neutral complex between hypoxanthine and copper could not be isolated due to gel formation (Weiss & Venner, 1965). In hypoxanthine (I) and adenine (II) the proton attached to one of the imidazole nitrogen atoms is dissociated in slightly alkaline solution, thus making it possible for the metal

^{*} Present address: Chemical Institute, University of Bergen, Bergen, Norway.

to bind to either side of the imidazole ring. In the adenine complex the copper ion coordinates only to the

amino group since a chelate involving N(7) and the amino group is sterically less favourable. The coordination sites O(6) and N(7) in the hypoxanthine cation do not possess a similar sterical hindrance, and metal binding on either side of the molecule is thus more likely. The gel formation at high pH may be explained by the occurrence of an intermolecular chain structure where bridges between metal atoms are formed simultaneously at N(3), N(9) and O(6), N(7). At lower pH a 2:1complex is obtained with both adenine and hypoxanthine ligands. To retain a dimer structure similar to the one found in the neutral 2:1 AdCu complex, N(7) rather than N(9) must be protonated. This would be in accordance with the findings in the hypoxanthine analog. 6-mercaptopurine where the imidazole nitrogen atom N(7) is protonated (Sletten, Sletten & Jensen, 1969).

Experimental

Deep-turquoise crystals of bis-(6-hydroxypurine)copper(II) chloride trihydrate were obtained from a hydrochloric acid solution ($pH \simeq 4$) of hypoxanthine and cupric chloride in molar proportions 2:1 (Weiss & Venner, 1965). At lower pH a yellow 1:1 complex is formed. The turquoise crystals disintegrate when exposed to air and had to be mounted in a capillary. Several crystals were tested on the Weissenberg camera; however, all of them had very high mosaic spread. The crystal chosen for data collection had dimensions of approximately $0.22 \times 0.34 \times 0.40$ mm. The crystals belong to the triclinic system with two formula units per unit cell. Density measurements in a mixture of chloroform and tetrabromoethane indicated a variable water content for different crystals, averaging 3 to 4 water molecules per formula unit. The chemical analysis of the compound dried over silica gel corresponds to one molecule of hydration (Weiss & Venner, 1965).

Crystal data

[$(C_5H_4N_4O)_2Cu$]Cl₂. $3H_2O$ F.W. 460·7 Triclinic: PIa=9.858 (2), b=10.259 (4), c=9.717 (3) Å, $\alpha=102.53$ (3)°, $\beta=89.36$ (2)°, $\gamma=102.21$ (3)° $D_m=1.66$ g.cm⁻³, $D_x=1.63$ g.cm⁻³, V=936 Å³, Z=2, λ (Mo K α)=0.71069 Å, $\mu=14.1$ cm⁻¹

Cell dimensions were obtained from a least-squares treatment of 2θ settings of 18 reflections as measured on a Picker four-circle diffractometer. The cell dimensions changed slightly during data collection, resulting in a decrease in volume from 942 to 936 Å³. The intensities of the three standard reflections monitored during data collection decreased 15% on an average. The crystal moved slightly in the capillary, giving rise to a 5% fluctuation in intensities compared with the usual 1% fluctuation observed for crystals mounted on glass fibers. 2313 unique reflections were measured within a sphere limited at sin $\theta/\lambda = 0.54$ using the $\theta - 2\theta$ scan technique and niobium filtered Mo Ka radiation. The scan ranges were calculated according to the relation $\Delta 2\theta = A + B$ $\tan \theta$ (Alexander & Smith, 1964). The constant A had to be set equal to 2.5° to cover the broad mosaic peak. B was taken as 1.0, a value which has been found to be satisfactory for Mo radiation. A background count was made at each end of the scan range for half the time of the total scan, and the net count deduced by subtracting the two backgrounds from the peak scan. 243 reflexions had net count less than the threshold value of $2\sigma_c$ where $\sigma_c = (N_{B_1} + N_{pk} + N_{B_2})^{1/2}$. These reflections were given the value $2\sigma_c$ and were included in the refined ment only if F_c was greater than the F_o corresponding to the threshold value. The data were corrected for Lorentz and polarization effects. Also, an empirical cor-

Fig. 1. The molecule drawn with a full line is a hypoxanthine ligand connected to the copper ions as viewed normal to the ligand plane. The molecule in dashed lines is arrived at by a 180° rotation around a line lying in the plane of the ligand and going through the centre of symmetry, normal to the Cu–Cu 'bond'.

EINAR SLETTEN

Table 1. Observed and calculated structure factors

li ämäksetkesi säälekästä jenkäsetkis sekätanti. Laukaanti keliksetki luotetta laatkelaetta laukaan laukaan ke 1994	structure farment farment farmenter jarmenter farmen farmen farmen farmen farmen farment minnen farmenter farme Structure indenties farment farmen farme er ben er sin en sin inden structure indenter minnen er sinderen farmen	u sous suures and suure Siaisi jassississi jassississi jasississi jassississi jassissississi jassississi jassississi jassississi jassis Siaisi jassississi jassississi jassissi jassissi jassissississi jassississi jassississi jassississi jassississi	me midsing serior series and a series in the series of the		unuraaa va uu uuraa muuraa nuraaa muuraa muuraaan uuuraaa uuuraaa uuuraaa tuunaaa tuunuaaa kuuu aaaa kuuu Muuraanii jasti ahteesi seksessi ameensi kurattii ulitteesii julitteesii jastaattii jastaanii jastaaattii jasta	utionerside us ein alusten sechter zichtung under sichter einenseit verlichten under sichtersiche zublichen bereichen zuhlten 	at į straturė į straturė į statures į straturė į straturitet į straturitet į straturita į autonat į straturita 19. viederė – istraturė – straturė – induceda – maliderių – straturietų – straturita į straturitų – straturitų –	and and a second of the second of the second of the second of the second seco	in suits zette environment institution in the second in The suits zette environment institution is second in the	wereness instructions instructions interventions	itituiti säiteisti mäisedi is si atte asie adite hinine asiniks chartes calation esitetta asitetta mituride mäi		suris afformiz s au shee shear archar eached afform afformation afformation water and an and a subjective archaracter And and a formation of the state states states and and a survey and a survey and a subjective and a subjective a		stirctute andresse adverte des andre desute deside discribed acherent andress determined andressed and andressed and and and and and and and and and an	لا للنا المالية المناسبين المناسبين المنسب المنسب المنسب المنسب المنسب الم الم الم الم الم المن المنا المناسب ا المناسبين المناسبين المناسبين المناسبين المناسبين المناسبة المنسبة المناسبة المناسبين المنسبة للمنسبة للمنسبية ا	
	i ässäksiriksi siäkskiristä jakkiristä raksiriksi lakkiristän mikelitistä kuntenen kuntenen jakkirit änai siari Muuseenen uututeenen uututeesen kuntenenen heren dutenen kuutenen uuteenen kuutenen kuuteenen kuuteenen kuuteene	ie <mark>karitzriacie schadzach harberen barbenen. Leakkazitie miasterzie achteriste inchinier inchinicathe üzek derim inchinic auroso auroso auroso auroso auroso auroso auros auros auroso auroso auroso auroso auroso auroso auroso auroso otrasterzie baraconteri kansanteri zuros auro auros (otrace detace decare) danach (stantante auroso auroso auro etheitzekk inskantik zekeizeth barketenik enke erinet auroi aurose brance auroso auroso auroso auroso auroso a</mark>	i intrivention and the first state of the first of the first state and intervention intervent intervention interventine interventine intervention in	i intrikti zikadari intrikteri zikadari zeki zeki zeki interiesi intriktioni intriktioni interikti interiktion interik intiktion interiktion interktion int	(a) deriverie verbeit wirderen freihende beste zuhr under inderivere freihende freihende Freihende freihende frei	(1) Neuronia ministrant ministrati radiusti lealidatio ministra istricture istricture intervalue intervalue intervalue ministration intervalue interval	(i Next, reiter and the stand of the standard basis in the standard basis in the standard devices in the second devices in the standard device in the standard devices in the standard device in the standard	b) Handlerder gehörder heidert sicherte siche zum einen under eine berichten interferen interfere kanderen interven anderen interven einen ei	(* Next, rest, activating fractional fractional bank activation to the fractional fra	(1) Landarda and an and the standarda basis with and the standarda basis an	(* Samitania "and and "and "and "and "and "and "and	(1) Samiteriarda affartalis factorizati	(1) The second and the second function is the second problem is and the second interface in the second interface	(1) Handlerford gehörden freihende sinderford. Solds and a method and a second a second and a	Fi ment priori and a simulational functional formation in the state of the state	(1) The final order of the first final of the first	(a famil-relation entertantic fraction fraction is basis and the static fraction is consistent in the famile fraction is consistent. (a familier fraction is consistent in the static

rection for absorption as a function of φ was applied. A more accurate absorption correction was difficult to obtain because of the uncertainty in calculating the absorption of glass capillary and mother liquor surrounding the crystal.

Structure determination

A sharpened Patterson map gave the positions of the copper atom and one of the chlorine atoms. A Fourier synthesis based on these two atoms revealed the hypoxanthine molecules. It was not possible to distinguish between water molecules and the second chlorine atom at this stage. The hypoxanthine ligands show the same kind of disorder as that found in AdCu where in some of the unit cells the ligands are rotated 180° so as to interchange the donor atoms N(3) and N(9) (Fig.1) All the atoms except C(5), C(6) and O(6) overlap almost completely in the two orientations.

A structure factor calculation based on Cu, Cl (1) and 30 light atoms (C, N and O) gave an agreement factor of 0.25 $(R = \sum (||F_o| - |F_c||) / \sum |F_o|)$. Atoms C(5), C(6) and O(6) were assigned fractional multiplicity factors. Two cycles of isotropic least-squares refinement lowered R to 0.15. At this stage the distances from three of the oxygen atom sites to the nitrogen atom were in the range 2.7 to 2.9 Å, which is the range of a normal $N-H\cdots O$ hydrogen bond. The distance from the fourth oxygen atom site to the closest nitrogen atom [N(12)] was 3.2 Å and this corresponds to a normal $N-H\cdots Cl$ hydrogen bond. Accordingly, this site was chosen as the position of the second chlorine atom in the succeeding refinement. The thermal parameters of this chlorine atom were found in the final refinement to be exceptionally high. The temperature factors for the three water molecules were also found to be unreasonably large. This apparent thermal motion is probably induced by the disorder in the crystal.

Two cycles of least-squares refinement with anisotropic thermal parameters on atoms with unit multiplicities lowered R to 0.12. Fractional atoms were refined by simultaneously adjusting occupancy and temperature factors. This procedure gave a satisfactory result for ligand (1), where the relative amount of the two rotamers are approximately 2:3. For ligand (2) one of the orientations is dominant (about 90%) and the fractional atoms with low multiplicities (0.1) could not be refined by least-squares. Since the electron densities of these sites were only slightly above the noise level, the coordinates were determined with low precision and were thus omitted from the coordinate table. Two more least-squares cycles did not improve the results significantly, and the refinement was terminated at an R of 0.11. The atomic positions in the hypoxanthine ligands could not be determined to a precision suitable for discussing the influence of the metal bonding on the purine skeleton. The lack of precision in coordinates is mainly due to the disorder in the crystal and the poor quality of the data. Observed and calculated structure factors

are listed in Table 1 and atomic parameters are found in Table 2.

All the above calculations were carried out on an IBM 7094 computer with programs from X-ray 63 (Stewart, 1964). Structure factor calculations were based on the scattering curves in *International Tables* for X-ray Crystallography (1962).

Results and discussion

Environment of the copper ion

The coordination of the copper ion is established with reasonable precision in spite of the disorder and is shown in Fig. 2. A least-squares plane calculated through the four nitrogen atoms in the basal plane of the square pyramid shows that the diagonal atom pair N(31), N(91) is 0.005 Å below the plane and N(32), N(92) is 0.005 Å above the plane. The copper ion is displaced from this plane by 0.29 Å in a direction toward the apical chlorine atom. A similar displacement (0.27 Å) is found in AdCu where the apical ligand is a water molecule. The average of the Cu-N bond lengths is 2.00 Å, with the Cu–N(3) bonds systematically longer than Cu-N(9) bonds, which is consistent with a larger amount of s-character in the coordinating orbital of the imidazole nitrogen atom, N(9). The same trend is observed in AdCu where the average Cu-N(9) bond is 2.007 Å and the average Cu-N(3) bond is 2.032 Å. The fact that Cu-N bonds in the present structure are shorter than corresponding bonds in AdCu is somewhat surprising since a neutral 'inner' complex is expected to form stronger dative bonds than a charged complex.

The apical Cu–Cl(1) bond length of 2.431 Å is approximately half way between an ionic (2.62 Å) and a

Fig. 2. Environment of the copper ion.

1613

Table 2. Fractional atomic coordinates and thermal parameters and estimated standard deviations (in parentheses) Anisotropic temperature factor: $T_t = \exp \left[-\frac{1}{4} (B_{11}h^2a^{*2} + B_{22}k^2b^{*2} + B_{33}l^2c^{*2} + 2B_{12}hka^*b^* + 2B_{13}hla^*c^* + 2B_{23}klb^*c^*) \right]$.

		• • • •	1 . +						
	x/a	y/b	z/c	B_{11}	B ₂₂	B ₃₃	B_{12}	<i>B</i> ₁₃	B ₂₃
Cu	0.5611(2)	0.6520 (1)	0.0349 (2)	4.64 (7)	2.19 (6)	4.54 (8)	0.54 (5)	0.38 (6)	1.22 (5)
Cl(1)	0.6522 (4)	0.8975 (3)	0.0846 (4)	6.9 (2)	2.4 (1)	8.3 (3)	0.2 (1)	0.2 (2)	1.5 (1)
Cl(2)	1.1850 (9)	0.9042 (10)	0.2889 (10)	17.1 (7)	19·3 (7)	22·0 (9)	-6.3 (6)	2.1 (6)	- 6.5 (7)
C(21)	0.4942(13)	0.2621 (15)	-0·3428 (17)	5.8 (7)	5.0 (8)	4.4 (9)	2.3 (6)	<i>−</i> 0·5 (7)	-0.1(7)
C(41)	0.5887 (13)	0.4860 (15)	-0·2585 (13)	4.6 (6)	6.5 (8)	3.2 (6)	2.3 (6)	0.8 (5)	2.7 (6)
C(81)	0.6873 (14)	0.6970 (14)	-0·2368 (17)	6.1 (7)	5.9 (7)	5.4 (1.0)	1.1 (6)	1.5 (7)	3.7 (7)
C(22)	0.8489 (18)	0.6769 (19)	0.1392 (19)	5·2 (9)	5.3 (9)	5.5 (1.1)	1.0 (8)	-0·1 (8)	1.7 (8)
C(42)	0.7354 (16)	0.4577 (17)	0.0753 (18)	5.6 (8)	4.7 (9)	5·4 (9)	2.1 (7)	2.4 (7)	2.8 (8)
C(82)	0.6782 (21)	0.2360 (18)	0.0339 (22)	7.7 (1.0)	4.8 (1.0)	7.6 (1.1)	2.7 (8)	2.3 (8)	2.7 (9)
N(11)	0.5499 (11)	0.2861 (11)	-0·4618 (12)	6.8 (6)	4.6 (6)	4.1 (7)	1.7 (5)	0.4 (5)	1.0 (5)
N(31)	0.5087 (9)	0.3622 (10)	-0·2269 (10)	4.4 (4)	4.8 (5)	4.0 (6)	1.4 (4)	0.5 (4)	0.5 (4)
N(71)	0.7147 (11)	0.6512 (12)	-0·3695 (14)	5.7 (5)	4·1 (6)	5.6 (7)	0.7 (5)	-0.3(5)	2.0 (6)
N(91)	0.6163 (9)	0.6079 (8)	-0.1645 (11)	5.0 (7)	2.6 (4)	5.4 (6)	0.8 (4)	-0.5(4)	1.5 (4)
N(12)	0.9550 (17)	0.6299 (20)	0.1731 (17)	7.3 (9)	10.7 (9)	5.6 (1.0)	4.3 (7)	1.1 (8)	3.0 (8)
N(32)	0.7303 (10)	0.5919 (9)	0.0833 (11)	6.1 (6)	3.3 (5)	4.4 (6)	1.0 (4)	1.0 (5)	1.4 (4)
N(72)	0.8153 (14)	0.2698 (14)	0.0920 (14)	8.6 (8)	8.3 (8)	7.1 (8)	5.4 (7)	1.1 (7)	3.4 (7)
N(92)	0.6297 (9)	0.3473 (9)	0.0298 (11)	4.8 (4)	3.1 (5)	5.6 (7)	1.0 (4)	1.0 (4)	1.9 (5)
O(1)	0·9840 (19)	0.0851 (22)	0.1399 (27)	12.1 (1.2)	16.1 (1.5)	32.4 (2.9)	0.1(1.1)	-0.8(1.5)	5.4 (1.6)
O(2)	0.4814 (15)	0.0729 (12)	-0.6938 (14)	14.4 (1.0)	8·2 (7)	7.7 (8)	3.8 (7)	-0.7(7)	-1.2(6)
O(3)	0.8537 (17)	0.8297 (18)	-0.5225 (16)	16.2 (1.2)	15.8 (1.3)	11.0 (1.1)	-0.4(1.0)	6.1 (9)	5.1 (1.0)
				В	М				
C(51)	0.6428(29)	0.5113 (33)	-0.3795 (35)	5.3 (6)	0.60				
C(51')	0.6103 (39)	0.4326 (48)	-0.4026(53)	5.2 (9)	0.41				
C(61)	0.6277 (23)	0.4041 (26)	-0.5023(31)	5.1 (5)	0.58				
C(61')	0.6865 (37)	0.5276 (41)	-0.4748 (49)	5.9 (8)	0.42				
C(52)	0.8524 (21)	0.4198 (41)	0.1166 (27)	5.0 (6)	0.84				
C(62)	0.9761 (23)	0.5075 (19)	0.1741 (21)	5.1 (7)	0.70				
O(61)	0.6687 (19)	0.4083 (22)	-0.6221(23)	6.4 (4)	0.53				
O(61')	0.7214 (27)	0.5058 (30)	-0.6045(32)	6.3 (6)	0.37				
O(62)	1.0830 (14)	0.4841 (14)	0.2133 (15)	5.8 (4)	0.68				
O(62')	1.0338 (94)	0.3545 (93)	0.1788 (93)	6.0 (9)	0.09				

Fig. 3. The structure viewed along the c axis. (i), x, y+1, z; (ii), x, y+1, z+1; (iii), 2-x, 2-y, -z.

covalent bond (2.27 Å), and is thus comparable with the apical copper-water oxygen bond of 2.195 Å in AdCu. The internuclear Cu-Cu distance of 3.024 Å is 0.075 Å longer than the corresponding distance in AdCu. Chemically the 'bite' of hypoxanthine and adenine should be almost identical. The effect of replacing the water molecule as apical ligand with a chlorine atom may result in a stronger axial coordination and thus pull the metal ions further apart. There is probably no incipient covalent bonding between the copper ions that might counteract a larger separation.

Molecular packing

The environment of the complex is shown in Fig. 3. Each hypoxanthine ligand has two hydrogen-bond donors, N(1) and N(7), and one potential hydrogen-bond acceptor, O(6). Donor atoms N(11), N(71) and N(72) participate in hydrogen bonds to water oxygen atoms O(2), O(3) and O(1) respectively, while the fourth donor atom N(12) is hydrogen bonded to a chlorine atom Cl(2). The carbonyl oxygen atoms do not participate in hydrogen bonding. Instead both O(61) and O(62) have close contacts to imidazole rings in neighbouring dimers, with the C = O vector pointing nearly perpendicular to the plane of the imidazole ring. O(61) is situated 3.00 Å from the plane through the imidazole ring of ligand (2) translated one unit along the negative zaxis, while O(62) is situated 3.00 Å from the corresponding plane of ligand (1) inverted through the centre of symmetry in $(1, \frac{1}{2}, 0)$. The occurrence of identical intermolecular short contacts for the two crystallographically independent carbonyl groups may indicate the existence of a stabilizing interaction between the carbonyl dipole and the π -system of the purine moiety.

The chlorine atom coordinated to copper is hydrogen bonded to two water molecules. The $O(9)-H\cdots Cl(1)$ bond of 3·21 Å is 'normal' while the $O(1)(i)-H\cdots Cl(1)$ bond of 3·41 Å is on the limit of what might be considered a hydrogen bond. The non-coordinated chlorine atom Cl(2) participates in two 'normal' hydrogen bonds $[N(12)-H\cdots Cl(2)=3\cdot21$ Å, and $O(3)(iii)-H\cdots Cl(2)=$ $3\cdot24]$ and one 'long' hydrogen bond $[O(1)(i)-H\cdots Cl(2)=$ $3\cdot26$ Å]. The angle $\angle Cl(1)-O(1)(i)-Cl(2)=108\cdot8^{\circ}$ is close to an H-O-H bond angle, and is thus consistent with the presence of 'long' hydrogen bonds between water molecule O(1) and the two chlorine ions.

The author wishes to thank Dr Lyle H. Jensen for valuable advice in the course of this work. Financial support under Grant AM-3288 from the National Institutes of Health is gratefully acknowledged.

References

- ALEXANDER, L. E. & SMITH, G. S. (1964). Acta Cryst. 17, 1195.
- International Tables for X-ray Crystallography (1962). Vol. III, p. 208. Birmingham: Kynoch Press.
- SLETTEN, E. (1969). Acta Cryst. B25, 1480.
- SLETTEN, E., SLETTEN, J. & JENSEN, L. H. (1969). Acta Cryst. B25, 1330.
- STEWART, J. M. (1964). Crystal Structure Calculations System X-ray 63. Univ. of Maryland Technical Report TR-64-6. Computer Sciences Center, University of Maryland.
- WEISS, R. & VENNER, H. (1965). Z. Physiol. 340, 138.

Acta Cryst. (1970). B26, 1614

An Alternative Form for $B_{3,0}$, a Phase Determining Formula

By J. KARLE

U.S. Naval Research Laboratory, Washington, D.C., 20390, U.S.A.

(Received 2 October 1969)

An alternative form is derived for the phase determining formula $B_{3,0}$ defining $\cos(\varphi_{h_1} + \varphi_{h_2} + \varphi_{-h_1-h_2})$ in which improved scaling is achieved by replacing the coefficient in the original formulation of this formula by a ratio of averages over functions of normalized structure factor magnitudes. Subsets of the measured data used with the modified $B_{3,0}$ formula generally give more accurate results for the cosine function than the complete set of data. A method for examining various subsets and choosing an optimum value is presented. The modified $B_{3,0}$ relation readily permits use of limited subsets of the experimental data. It has application as an auxiliary formula for use with the symbolic addition procedure. Used with care, the modified $B_{3,0}$ formula can help to determine which triples, $\varphi_{h_1} + \varphi_{h_2} + \varphi_{-h_1-h_2}$, are close to zero, a basic assumption in the symbolic addition procedure, and which ones may be exceptions. The formula can also help to evaluate symbolic phases.

A form of expression $B_{3,0}$ of sufficient generality for the present purposes is given for centrosymmetric crystals (equation 2.1.3 of Hauptman & Karle, 1958) and for noncentrosymmetric crystals (equation 2.1.3 of